Rappels sur les nombres complexes

pour le cours Signaux et Systèmes

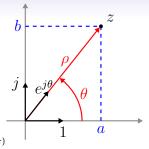
Notions de base

- j: nombre imaginaire tel que $j^2=-1$
- Un nombre complexeun point dans le plan
- Deux caractérisations possibles:
 - ► Forme cartésienne:

$$z = a + jb \ (a, b \in \mathbb{R})$$

► Forme trigonométrique/polaire:

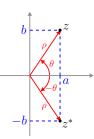
$$z=
ho e^{j heta}$$
 ($ho\in\mathbb{R}^+$; $heta\in\mathbb{R}$ en radians, défini modulo 2π)



- ► Formule d'Euler: $e^{j\theta} = \exp(j\theta) = \cos(\theta) + j\sin(\theta)$
- ► Terminologie et notations:
 - Partie réelle: $\mathfrak{Re}\{z\} = a \quad (= \rho \cos(\theta))$
 - Partie imaginaire: $\mathfrak{Im}\{z\} = b \quad (= \rho \sin(\theta))$
 - Module: $|z| = \rho$ (= $\sqrt{a^2 + b^2}$)
 - Argument/phase/angle:

Arg
$$z = \Phi(z) = \theta$$
 (= $\arctan(b/a) \mod 2\pi$ si $a > 0$)

► Conjugaison complexe: $z^* = a - jb = \rho e^{-j\theta}$



Formulaire

► Module et argument du complexe conjugué:

$$|z^*| = |z|$$
 Arg $z^* = -\text{Arg } z$

Somme/différence/produit/quotient avec le conjugué:

$$\begin{array}{ll} z+z^*=2\mathfrak{Re}\{z\} & z-z^*=2j\mathfrak{Im}\{z\} \\ zz^*=|z|^2 & z/z^*=e^{j2\mathrm{Arg}\ z} \end{array}$$

- ▶ Distributivité de la conjugaison par rapport aux 4 opérations: en particulier $(z_1z_2)^* = z_1^*z_2^*$ et $(1/z)^* = 1/z^*$
- ▶ Module et argument d'un produit:

$$|z_1 z_2| = |z_1| \cdot |z_2|$$
 Arg $z_1 z_2 = \text{Arg } z_1 + \text{Arg } z_2$

- ▶ Inversion: $1/z = z^*/|z|^2$, en particulier $|z| = 1 \Rightarrow 1/z = z^*$
- ▶ Module et argument de l'inverse:

$$|1/z| = 1/|z| \qquad \text{Arg } 1/z = -\text{Arg } z$$

Variantes de la formule d'Euler:

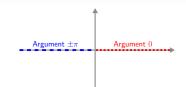
$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
 $\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$

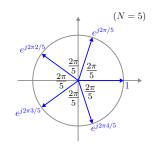
Autres propriétés

► Caractérisation de l'axe réel:

$$z \in \mathbb{R} \Rightarrow \operatorname{Arg} z = \begin{cases} 0 \text{ si } z > 0 \\ \pi \text{ si } z < 0 \end{cases}$$

- ► Caractérisation du cercle unité: $|z| = 1 \Rightarrow z$ de la forme $z = e^{j\theta}$
- Racines Nèmes de l'unité:
 - L'ensemble des solutions dans $\mathbb C$ de l'équation $z^N=1$ est $\{e^{j2\pi n/N}; n=0,\dots,N-1\}.$
 - Propriété: $\sum_{n=0}^{N-1} e^{j2\pi n/N} = 0$





Sinusoïdes complexes

- Forme générale: $z(t) = Ae^{j(\omega t + \phi)}$
 - lacksquare $A \in \mathbb{R}^+$: amplitude (réelle et positive)
 - $m \omega \in \mathbb{R}$: fréquence (en radians par unité de temps)
 - $\phi \in \mathbb{R}$: phase à l'origine (pour t=0)

- Périodicité: $z(t + 2\pi/\omega) = z(t)$
- Décalage: $z(t-t_0) = e^{-j\omega t_0}z(t)$
- ► Représentation graphique: $(A = 4, \omega = \pi/3, \phi = -\pi/2)$

